Incorporating Topic Assignment Constraint and Topic Correlation Limitation into Clinical Goal Discovering for Clinical Pathway Mining
نویسندگان
چکیده
Clinical pathways are widely used around the world for providing quality medical treatment and controlling healthcare cost. However, the expert-designed clinical pathways can hardly deal with the variances among hospitals and patients. It calls for more dynamic and adaptive process, which is derived from various clinical data. Topic-based clinical pathway mining is an effective approach to discover a concise process model. Through this approach, the latent topics found by latent Dirichlet allocation (LDA) represent the clinical goals. And process mining methods are used to extract the temporal relations between these topics. However, the topic quality is usually not desirable due to the low performance of the LDA in clinical data. In this paper, we incorporate topic assignment constraint and topic correlation limitation into the LDA to enhance the ability of discovering high-quality topics. Two real-world datasets are used to evaluate the proposed method. The results show that the topics discovered by our method are with higher coherence, informativeness, and coverage than the original LDA. These quality topics are suitable to represent the clinical goals. Also, we illustrate that our method is effective in generating a comprehensive topic-based clinical pathway model.
منابع مشابه
A review of text mining approaches and their function in discovering and extracting a topic
Background and aim: Four text mining methods are examined and focused on understanding and identifying their properties and limitations in subject discovery. Methodology: The study is an analytical review of the literature of text mining and topic modeling. Findings: LSA could be used to classify specific and unique topics in documents that address only a single topic. The other three text min...
متن کاملModeling Word Relatedness in Latent Dirichlet Allocation
Standard LDA model suffers the problem that the topic assignment of each word is independent and word correlation hence is neglected. To address this problem, in this paper, we propose a model called Word Related Latent Dirichlet Allocation (WR-LDA) by incorporating word correlation into LDA topic models. This leads to new capabilities that standard LDA model does not have such as estimating in...
متن کاملIncorporating Word Correlation Knowledge into Topic Modeling
This paper studies how to incorporate the external word correlation knowledge to improve the coherence of topic modeling. Existing topic models assume words are generated independently and lack the mechanism to utilize the rich similarity relationships among words to learn coherent topics. To solve this problem, we build a Markov Random Field (MRF) regularized Latent Dirichlet Allocation (LDA) ...
متن کاملTopic Modeling and Classification of Cyberspace Papers Using Text Mining
The global cyberspace networks provide individuals with platforms to can interact, exchange ideas, share information, provide social support, conduct business, create artistic media, play games, engage in political discussions, and many more. The term cyberspace has become a conventional means to describe anything associated with the Internet and the diverse Internet culture. In fact, cyberspac...
متن کاملA Sparsity Constraint for Topic Models - Application to Temporal Activity Mining
We address the mining of sequential activity patterns from document logs given as word-time occurrences. We achieve this using topics that model both the cooccurrence and the temporal order in which words occur within a temporal window. Discovering such topics, which is particularly hard when multiple activities can occur simultaneously, is conducted through the joint inference of the temporal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017